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Abstract—In this paper, we investigate on the relationship
between player experience and body movements in a non-physical
3D computer game. During an experiment, the participants
played a series of short game sessions and rated their experience
while their body movements were tracked using a depth camera.
The data collected was analysed and a neural network was trained
to find the mapping between player body movements, player in-
game behaviour and player experience. The results reveal that
some aspects of player experience, such as anxiety or challenge,
can be detected with high accuracy (up to 81%). Moreover, taking
into account the playing context, the accuracy can be raised up
to 86%. Following such a multi-modal approach, it is possible to
estimate the player experience in a non-invasive fashion during
the game and, based on this information, the game content could
be adapted accordingly.

I. INTRODUCTION

Interconnecting the player and the game in a closed
affective-loop has the potential to open several new directions
for game design and game development. A computer game
that is able to evaluate the player’s experience and directly
influence it could adapt to the player’s to induce specific
player’s reactions. In their paper, Yannakakis and Togelius [1]
envision, among other things, a form of design in which
the game designer would instruct the software to generate
the game content according to some target affective states.
Yannakakis and Togelius encapsulate the principles of affective
computing [2] within a framework, in which the computer
senses several aspects of the player experience and searches an
optimal configuration of the game content to gear the current
experience towards a desired state.

The main objective of affective computing can be described
as the successful realisation of the affective loop [3]. This
means that, during the interaction, a machine should be able
to detect the user’s affective state and consequently adapt its
behaviour. Detecting and understanding the user’s state is a
challenging task [4]: the number of necessary modalities is
very large, many useful modalities are quite invasive — e.g.
BCI or Gaze Tracking — and the emotional response might
differ from user to user. In a human-computer interaction
and especially in computer games, the invasiveness of the
detection method is crucially important as it might alter the
user’s experience. Relatively non-invasive devices such as a
finger biofeedback signal sensor [5] or the Emotive EPOC1

affect the interaction — e.g. by reducing mobility — and might

1http://www.emotiv.com/epoc/

appear cumbersome and introduce a bias in the affect detection
outside of a laboratory environment.

An interesting opportunity to overcome this limitation
comes for the recent introduction of devices such as Microsoft
Kinect 2, which allow to wireless estimate the user’s move-
ments and her pose. Pose has been analysed as a possible
estimator of affect by several researchers [6], [7], [8]; we
propose an approach to affect detection and, in general, player
experience evaluation based on a combination of behavioural
cues coming from both the real world postural movements and
the virtual world context. Furthermore, our approach analyses
the changes in posture rather than the absolute body position
with the purpose to build models more robust across different
users.

We believe that the combination of multiple modalities
along with the use of a posture motion allows to build more
accurate models which are also more robust across different
users and applications. The objective of this research work
is to explore the relationship between postural movements, in-
game behaviour and reported player experience and investigate
if it is possible to estimate player experience from the first
two. This work is aimed at providing a less invasive and more
effective way to capture player experience for the purpose of
game content adaptation/generation within the framework of
Experience-Driven Procedural Content Generation [1].

For this purpose, we conducted an experiment to evaluate
the ability of our approach to predict users’ reports on their
experience. A number of players played a series of short game
sessions with different challenges and levels of difficulty while
their pose was recorded trough a depth camera. In the game
employed in the experiment, the participants interact with the
game using a game controller, so their posture has no active
role in the game-play. After each couple of experiences, the
users reported their feedback on the experiences in forms of
pairwise preferences. Based on these data, we built 6 models
of corresponding to 6 different aspects of player experience;
the models are built to predict the users’ reported preferences
using preference learning [9]. The results show that through
the proposed approach we are able to predict aspect such as
reported challenge with an 81% accuracy and reported anxiety
with up to 86% accuracy.

2http://www.microsoft.com/en-us/kinectforwindows/



(a) Fight (b) Jump (c) Collect

Fig. 1. User interface of the game for the three different tasks with on screen instructions. The UI shows a short text explaining what the player should do
(bottom left), the time remaining (top left), the number of items collected (top right) and the controls (bottom right).

II. RELATED WORK

Players’ emotional response to a gaming experience is an
important aspect of player experience [10] and developing
robust methods to measure such a response is a key step
towards goals such as adaptive game-play or procedural con-
tent generation [1]. Researchers have investigated different
modalities, spanning from facial expressions to electrocardio-
graphy (ECG), to estimate the player’s affective state from her
physiological responses.

Mandryk et al. [11] have investigated how multiple phys-
iological measurements, such as skin conductance or hearth
rate, correlate with some aspects of the players’ affect while
playing a sport game. Barreto et al. [12] pursued the same
objective but concentrated their research in estimating user’s
stress using machine learning techniques — i.e. Decision
Threes and Support Vector Machines. Their results show how
machine learning an physiological data can be lead to very
high accuracy in stress prediction. More recently, Tognetti
at al. [13] and Martinez at el. [14] have investigated player
experience estimation and modelling through a combination
of physiological features and preference learning.

While the results presented by the aforementioned works
are very solid, their main limitation lies in the invasiveness
of their measurement methods. Capturing signals such as
galvanic skin response or heart rate requires the player to
be wired with some on-body sensors, potentially introducing
some interference in the player’s experience. Pedersen et
al. [15], have investigated the possibility of estimating various
aspects of player experience only based on a combination of
features extracted from the players’ in-game behaviour. Other
researchers have, instead, investigated less invasive means of
measuring the player’s physical response, such as body posture
and motion.

Savva et al. [16] investigated the usage of multiple motion
sensors attached to the players’ body to estimate their affect
during full-body game play sessions. A number of studies [17],
[18], [7], employed different forms of chairs featuring a matrix
of pressure sensors to estimate postural activity and predict
aspects such as frustration or engagement; however, these
studies focus primarily human-to-human or human-to-agent
interaction — i.e. the player interacts “face-to face” with an
artificial agent — which limits the applicability of the results to
a computer games in which there is no such type of interaction.
Moreover, both in these studies, as well as in the work by
Savva et al. [16], the measurements require a custom hardware
combined, in some cases, with other physiological sensors,

making them complex to be employed for player experience
estimation in commercial games.

A further approach to non-invasive estimation of affect
and cognition employs computer vision to detect different
aspects, such as head pose [19] or facial expressions [20].
Shaker et al. [21] extended their initial work on head pose
by including game contextual information and and visual
reactions, demonstrating an increase in the prediction accuracy
when multiple modality are combined. In this research work
we employ a similar approach to testing whether body posture
can be used along with game contextual information to achieve
similar or better results.

III. THE EXPERIMENT

The goal of this study is to investigate whether body
motion can be used along with player in-game statistics to
estimate player experience. For this purpose, we conducted an
experiment with 26 participants playing six pairs of short game
sessions (maximum 30 seconds each) with different virtual
camera settings and with different tasks. Each participant is
seated in front of a computer and is asked to hold an Xbox
360 3 game controller; after this, the participant is guided
through the experiment by on-screen instructions. As depicted
in Figure 1, the controls for the characters where organised
according to the following configuration: left thumb-stick for
avatar movements, A button for jumping and B button for
punching. The participant plays initially three pairs of games,
each pair features a different game task and the two games in
the pair differ only by the way the camera behaves. During
the second phase of the experiment, the participant plays the
same initial three pairs, but the order of the camera settings is
inverted to minimise the effect of the order of play. For each
pair, the player has to compare her experience between the
two games on a set aspects — e.g. frustration or engagement.

The game employed in this study is a reduced version of
Lerpz Escape, a three-dimensional platform game by Unity
Technologies4. Similarly to the original game, it features an
alien-like avatar trapped in a futuristic 3D environment made
of floating platforms and containing collectible items and non-
player characters. The game world is composed by one area
in which each player has to complete the assigned task; the
area contains different elements depending on the task to be
performed. The tasks that the each player has to perform in
the three games are the following:

3http://www.xbox.com/en-GB/xbox360/
4http://www.unity3d.com



Fig. 2. Map of the game level with the position of the elements. A points at
the spawn location of the avatar, B indicates the spawn position of the enemy
during the fight task, D is the target location of the jump task and C1 to C4
indicate the position of the collectible items during the collect task.

• Fight: the player has to fight with an enemy and
destroy it.

• Collect: the player has to collect a number of items.

• Jump: the player has to reach a specific area of the
game level.

The game environment is composed by a large circular 3D
platform containing a small building and a series of crates as
shown in Figure 2. In the “fight” scenario, the environment
includes an opponent which spawns near the centre of the
main platform (position B in Figure 2) and chases the avatar
controlled by the player. The player can punch the opponent,
which in turn will try to push the player out of the platform.
In the “collect” scenario, the player needs to collect 4 items
placed as shown in Figure 2. In the “jump” scenario, the
player needs to jump over the small platforms shown to reach
the top of the building (position D in Figure 2).

If the task is not completed in 30 seconds, the experiment
continues to the next game in the pair or to the next pair.
These three tasks represent the basic mechanics of a 3D
platform game and have been separated in order to collect
a finer feedback about the effects of the different camera be-
haviours. The dependent variables that are measured during the
experiment are the players’ reported states and their in-game
performance. Furthermore, each game sessions is recorded
using a Microsoft Kinect, to collect information about the
players’ posture motion. The independent variables of this
experiment are the game tasks and the camera behaviour.

A. Camera Behaviour

The virtual camera behaviour changing across the different
game sessions is the main difference in the stimuli used in the
experiment. For this reason, in order to ensure replicability
of the experiment, in this section, we describe the cinemato-
graphic conditions employed.

Based on previous articles describing the impact of cam-
era behaviour on player experience [5], the different camera
configurations are designed to maximise such impact, ranging
from very close shots to aerial view. The camera is instructed
to produce the following 6 types of shot: bird’s eye, fixed,
long shot, mid shot, over the shoulder, and point of view.
These shots offer a range of different visual experiences of
the same game ranging from a very detached and distant
one for the bird’s eye and fixed shots to a very close and
claustrophobic experience in the point of view shot. Results
of a study conducted in parallel to this work [22] — the
study was conducted using the same game for the purpose of
investigating the impact of virtual cinematography on player
experience — show a strong impact of the aforementioned
camera configurations on the player experience, which ensure
presence of a wide range of emotional and cognitive responses
connected to the different stimuli.

In all experimental conditions, the camera is controlled
by an automatic camera controller, which ensures the shots
maintain the required properties while the avatar and, when
present, the enemy move around the environment. The imple-
mentation of the camera controller is based on the architecture
proposed in one of the authors previous work on virtual
cinematography [23]. The instructions given to the controller
to generate the shots are the following:

• Bird’s eye: The avatar should be visualised at the
centre of the screen from a high vantage point.

• Fixed: The camera stands above the level visualising
the entire scene from a fixed perspective.

• Long Shot: The avatar is shown on screen from be-
hind and the camera keeps at and appropriate distance
so that its body is completely visible.

• Mid Shot: The avatar is shown on screen from behind
and the camera keeps at and appropriate distance so
that only the upper part of its body is visible.

• Over The Shoulder: The camera stands above the left
shoulder of the avatar — which is partially visible —
and points towards the enemy or the nearest item to
collect.

• Point Of View: Similarly to a first person game, the
viewpoint is placed by the side of the head of the
avatar.

B. Player Experience

Six features have been selected to describe player expe-
rience: challenge, frustration, fun, anxiety, engagement and
attention. They describe both aspects of the player’s affective
and cognitive states, which have shown signs of dependence
on the way the virtual camera moves — i.e. the independent



Fig. 3. 4-AFC questionnaire on player experience filled out by the player
every pair of games played.

variable of this experiment [5], [22]. Furthermore, the first
four features allow a comparison with previous works on
affect detection for procedural content generation such as [5]
and [15]. Attention and Engagement are included as a further
development of one of the authors’ previous study on attention
based camera control [24], with the purpose of investigating
the possibility of estimating these two features for on-line
virtual camera adaptation.

Each state is expressed as a comparison between two
games through 4-alternative forced choice (4-AFC) question-
naire scheme. As show in Fig 3, the preference questionnaire
includes four alternative choices: Game A, Game B, Neither
or Both Equally. This scheme has been chosen over a rating
scheme for a number of advantages, including the absence
of scaling, personality, and cultural biases as well as the
lower order and inconsistency effects [25]. Moreover, a 4-AFC
scheme, opposed to a 2-AFC scheme, accounts also for cases
of non-preference. Moreover, the scheme has been successfully
employed for player experience recording in previous proce-
dural content generation works for aspects such as view-point
adaptation [5] or platform game level generation [15].

Finally, for each player, we asked to quantify his/her
gaming experience, age and gender, and we recorded the
duration of each game session.

C. Posture Movements

While different libraries for skeletal tracking can be used in
conjunction with the Kinect, in order to acquire the maximum
possible information about the participants’ body, we decided
to record raw data from the depth and the RGB sensors of
the Kinect. For this analysis, we have processed the date
through a fast and simple marker-less body posture tracking
method to monitor the user’s body motion during the game-
play. The method uses only the depth images [26] provided
by a Microsoft Kinect and tracks a 2-point (head and torso)
skeleton in a user seated mode as shown in Figure 4.

The first part of the algorithm performs a slicing of the
depth map in which each layer represents the existence of

Fig. 4. Depth image captured through Kinect with locations of head and
torso.

objects of a specific depth range. The slicing is performed by
dividing the original values from the map with the constant
value of 4000, which transforms the depth map to sixteen
layers. In the layered depth map, the algorithm is using
a morphological filtering to cover any depth holes and a
connected components method to track the seated user in
each frame. The algorithm continues by applying a connected
components method. By this method, we track the person in
each frame, which defines our region of interest. We consider
the first “point of interest” to be the “torso point”, which is
equivalent to the centroid of the area tracked.

To find the head joint, a temporary calculation is made
between the known torso point and the top extrema points
of the region of interest. Then, we use the y coordinate of
this temporary head point and crop a line. From that line we
find the minimum and the maximum coordinates, which are
calculated by finding the positions of the first and the last
bit in that binary line. From that we obtain the minimum
and maximum y-coordinates of the head. The mean distance
between these head points is used to re-coordinate the central
head point to a more stable and accurate head centre. After this,
from the given depth frame, the depth values (z-coordinates)
of the head and the torso points are calculated.

Finally, a post-processing method is applied in order to
improve the results of the detected points and deal with a salt
and pepper-like noise. This noise was noticed on the results and
is produced by a small shift of the depth scene which derives
from the depth generation algorithm of the RGB-D camera.
This shift produces some changes in the x,y coordinates of
the detected 2 points of the head and torso, which should not
be accepted. To this goal, we apply a simple median filtering
to alleviate the data from this particular noise.

From the two points representing the head and the torso, six
features are extracted to describe the overall body movement
during each game session:

• Side and front lean shift: these features describe how



Att. Eng. Anx. Frustr. Chall. Fun
Side Lean Shift φ -0.07 -0.12 0.10 0.01 0.19 -0.08

p 0.54 0.26 0.43 0.91 0.09 0.44
Front Lean Shift φ -0.04 0.01 -0.12 -0.04 -0.04 0.04

p 0.76 1.00 0.36 0.82 0.74 0.70
Side Lean Motion φ 0.01 0.17 0.00 0.14 0.25 0.01

p 1.00 0.13 1.00 0.22 0.03 0.88
Front Lean Motion φ -0.01 0.10 0.08 0.11 0.09 0.01

p 1.00 0.36 0.57 0.42 0.42 0.90
Head Motion φ -0.03 0.04 0.05 0.16 0.12 0.07

p 0.84 0.76 0.73 0.21 0.28 0.50
Body Motion φ -0.01 0.06 0.03 0.16 0.12 0.04

p 1.00 0.61 0.91 0.21 0.28 0.75

TABLE I. CORRELATIONS — I.E. φ COEFFICIENTS — BETWEEN THE
PLAYERS REPORTED STATES AND THEIR MOVEMENTS. THE FIRST TWO

FEATURES DESCRIBE THE SHIFT BETWEEN THE PLAYER’S LEAN ANGLE AT
THE BEGINNING OF EACH SESSION AND AT THE END OF IT, THE THIRD

AND FOURTH FEATURE DESCRIBE THE OVERALL LEANING MOTION
PERFORMED BY THE PLAYER, THE LAST TWO FEATURES DESCRIBE THE

OVERALL DISTANCE COVERED BY THE PLAYER’S HEAD AND BODY
DURING EACH SESSION. THE ONLY SIGNIFICANT CORRELATION IS

HIGHLIGHTED IN BOLD.

much the player changes his/her position during the
game session. It is calculated as the difference between
the body angle at the end of the session and at the
beginning.

• Side and front lean motion: these features describe
how much the player moves during the game sessions.
It is calculated as the accumulated angular distance
that is covered by the player’s body during the game.
These measures, combined with the previous two, give
a description of the type of motion performed by the
player — e.g. if a player has high lean motion and
low lean shift, it means that he oscillated back an forth
during the game.

• Head and body motion: these two features describe
the overall motion of the head and body independently.
The are calculated as the accumulated linear distance
covered by the point describing the head position and
the one describing the torso position.

IV. RESULTS AND ANALYSIS

All 26 participants played 6 pairs of games generating a
total of 312 recorded game sessions. For each game session,
the recorded data contains information about the player move-
ments, the type of stimulus and the game-play statistics. We
first study the correlation between the player expressed states
with a set of features describing the game context and the body
movements.

The calculated correlation φ, which is reported in table I,
is calculated by converting body motion features and the
preferences into dichotomic variables: each preference assumes
value 1 when the first game is chooses and value 0 when the
second game is chosen; likewise, the body motion features
assume value 1 if the first game has a higher numerical value
and value 0 if the second game has a higher value. The φ
coefficient and its significance are calculated through a chi-
square test conducted on a reduced set containing only pairs
in which a preference was expressed, which covers, depending
on the feature, from 85% to 65% of the answers.

Att. Eng. Anx. Frustr. Chall. Fun
Age 1.02 0.63

Experience
Duration 1.03

Game Type 0.28
Side Lean Shift -0.20 0.16

Front Lean Shift -0.17 0.20
Side Lean Motion 0.60 3.30 0.34

Front Lean Motion 1.05 0.32 -1.08
Head Motion 0.06 0.25 0.28
Body Motion 1.47 0.54 0.69

Accuracy 65% 59% 76% 68% 81% 66%

TABLE II. PREDICTION ACCURACY OF THE SINGLE LAYER
PERCEPTRONS TRAINED TO ESTIMATE THE PLAYERS REPORTED STATES.

THE INPUTS OF EACH PERCEPTRON HAVE BEEN SELECTED USING
SEQUENTIAL FEATURE SELECTION AND THEIR WEIGHT IS DISPLAYED IN
THE TABLE. THE ACCURACIES DISPLAYED IN THE LAST LINE HAVE BEEN

ASSESSED THROUGH A LEAVE-ONE-OUT CROSS-VALIDATION.

The only significant correlation, in this first analysis,
emerges between the Side Lean Motion — i.e. the total amount
of side-wise motion that the player performed during the
sessions — and the reported challenge. This results indicate
that such a feature might be a good predictor of perceived
challenge and, intuitively, this is reasonable in a game which
involves the control of a virtual, human-like, avatar. However,
the correlation is not extremely strong, suggesting the concur-
rence/mediation of other features.

A. Single Layer Perceptron

For a more in-depth understanding of the relationship
between body motion and expressed emotions, it is necessary
to analyse the interplay of all the features combined and the
participants’ answer to the questionnaire. For this purpose, we
analyse the data using machine learning; more specifically,
to identify the combined relationships, we employ a single
layer perceptron trained using evolutionary preference learn-
ing. Based on the methodology proposed by [27], the fitness
function f(~x) used in the neuro-evolutionary process is given
by:

f(~x) =
1

k

k∑
i=0

εi(~x) (1)

where k is the number of pairs of game sessions in the data-
set and εi(~x) is equal to 1 if the configuration of the network
given by the weights ~x matches the reported preference in
the dataset and 0 otherwise. For this analysis, the preference
data is classified in three categories for each feature — i.e.
GameA, GameB and “Neither” with “Both Equally” — so a
3-class classification is performed. The class including both
the “Neither” and the “Both Equally” answers represents
non-preference cases. Finally, we employ sequential feature
selection to isolate only the features that have a relevant
impact on the models’ prediction. This allows us to discern
the relevant features from the irrelevant ones.

Table II displays the prediction accuracy of the models
built using this methodology and the weight of the connection
between the features selected and the input of the percep-
tron. The presence of a weight in the table, indicates that a
certain feature has been identified, through sequential feature
selection, as significantly related to the predicted preference.
The weight of that feature expresses the kind and magnitude



Fight Jump Collect
Age

Experience
Duration 0.66

Game Type
Side Lean Shift

Front Lean Shift -0.16
Side Lean Motion

Front Lean Motion -0.53 0.45 0.47
Head Motion 0.56 0.38 1.36
Body Motion 0.59

Accuracy 72% 85% 86%

TABLE III. PREDICTION ACCURACY OF A SINGLE LAYER
PERCEPTRON TRAINED TO ESTIMATE REPORTED ANXIETY ON SEPARATELY

FOR EACH GAME MECHANIC. THE ACCURACY IS ASSESSED THROUGH A
LEAVE-ONE-OUT CROSS-VALIDATION.

of the relationship, much like a correlation; however, the
relationship can be analysed only in relation with the other
features that compose the model’s input, as they all contribute
together to the model’s accuracy — i.e. the values are not
absolute coefficients but define the contribution of a feature in
proportion to the other ones.

The accuracy obtained in the prediction of anxiety and
challenge both exceed 75% suggesting a strong relationship
between the selected feature set and the reported player expe-
rience aspect. The highest score is achieved in the prediction
of the reported challenge (81%) and the selected features
include the game session duration and three aspects of the
body movements: side lean shift, side lean motion and front
lean motion. The positive relationship between challenge and
the game session duration can easily be explained by the
fact that there is a good chance that people will report as
more challenging a game which takes more time to complete.
Furthermore, it is interesting to see how side and front lean
motion have an opposite effect on challenge. Side lean motion
seems to have moderately positive relationship with reported
challenge, confirming the results of the correlation study. On
the other hand, front lean motion appears to have a negative
relationship, suggesting that the player that felt challenged in
the game moved moderately sideways, but performed very
little forward and backward leaning.

Reported anxiety appears to have a positive relationship
with most form of body motions and it seems to depend also
on the type of game that the player plays. For this reason,
we evaluate the anxiety reports employing three different
perceptrons, one for each game type. Table III shows that,
following this approach the prediction accuracy for anxiety
increases up to 86%. This result highlights the importance
of mediating the body motion modality through the game
context to achieve the most accurate modelling of the player
experience.

Furthermore, the overall results on anxiety and challenge
prediction are even more significant if compared with the
results on the same prediction in previous research works
using the same approach [5], [15]. A direct comparison is not
possible as the games employed for these studies are different
as well as the number of participants in the experiments;
however, the improvements in prediction accuracy suggest that
body posture movements give a significant contribution in the
estimation of these two states compared to both game-play

data and physiological data.

V. CONCLUSIONS

In this article we explore the interplay between player expe-
rience, body motion and game context. During an experiment,
26 participants played a series of short game sessions with
different settings while their body movements were recorded
using a depth camera. For each pair of games, the player
reported their preference between the games on a series of
features describing the player experience. The collected data
has been analysed using machine learning to predict the
reported states given information about the game context and
body motion.

The results of the analysis show that it is possible to predict
aspects of player experience, such as perceived challenge or
anxiety, with accuracy up to 86%. Such results demonstrate
the potentials of motion detection based on computer vision
as non-invasive and robust modality for implicit interaction
and player experience estimation. In light of these results, we
believe that it would be important to further investigate this
modality, especially at a single event level and in relationship
with other modalities, in order to have an robust and responsive
feedback on the player’s reactions to game events. Such a
methodology can be applied to drive a procedural content
generation process to generate in real-time the game content
depending on the current state of the player — e.g. to control
the level of anxiety of the player in an horror game.

Overall, we believe that the combination of postural move-
ments and in-game behaviour for the prediction of reported
player experience shows promising results and provides a non
invasive and robust mean for player experience estimation. At
the same time, it is more accurate than pure game-play based
estimation and less invasive than physiology or EEG/EMG
based approaches. Furthermore, the proposed solution relies
on inexpensive and widespread hardware, making it easy to
integrate in the game development process.
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